سامانه پنل خورشیدی (به انگلیسی: Solar panel) سامانهای است که می تواند انرژی خورشید را دریافت کند و آن را به الکتریسیته تبدیل کند که برای مصرف های تجاری و مسکونی قابل استفاده باشد. سامانههای فتوولتائیک معمولاً شامل یک پنل و ماژول های صفحات خورشیدی، اینورتر، و گاهی یک باتری یا ردیاب خورشیدی و سیمکشی اتصالات نیز می باشد.
پنل خورشیدی به یک ماژول فتوولتاییک اطلاق می شود یا یک پنل آب گرم خورشیدی، یا به یک مجموعه از ماژول های PV خورشیدی که به لحاظ الکتریکی، روی یک ساختار تکیه گاهی نصب شده اند. یک مدل PV، مجموعه ای از سلول های خورشیدی است که به هم متصل شده اند.[۱] پنل های خورشیدی را می توان به عنوان مؤلفه ای از یک سامانه فتوولتاییک بزرگتر، برای تولید و ذخیرهٔ الکتریسیته در کاربردهای تجاری و مسکونی، استفاده کرد. هر ماژول با یک توان خروجی DC، درجهبندی شده است که تحت شرایط تست استاندارد عمل می کنند (STC) و نوعاً از ۳۲۰ – ۱۰۰ وات دامنه و تنوع دارند. راندمان یک ماژول، مساحت ماژول (با خروجی مشابه درجه بندی شده) را تعیین می کند – ماژولی ۲۳۰ وات با راندمان ۸٪ دارای دو برابر مساحت یک ماژول ۲۳۰ واتی با راندمان ۱۶ درصد است – تعداد اندکی از پنلهای خورشیدی وجود دارند که راندمانشان / بازدهشان بیشتر از ۱۹ درصد باشد. یک ماژول خورشیدی منفرد میتواند تنها به میزان محدودی توان تولید کند، اکثر تأسیسات حاوی ماژولهای چندگانه هستند. یک سامانه فتوولتاییک نوعاً شامل یک پنل یا آرایهای از ماژولهای خورشیدی، یک مبدل و گاهی یک باهی یا تراکر خورشیدی و سیم پیچی درونی است.
تئوری و ساخت
ماژول های خورشیدی از انرژی نور خورشید یا فوتون ها برای تولید الکتریسیته از طریق تأثیر فتوولتاییک استفاده می کنند. اکثر ماژول ها از سلول های سیلیکون کریستالی وِیفر – محور یا سلول های فیلم نازک مبتنی بر کادمیوم تلیورید یا سیلیکون، استفاده میکنند. عضو ساختاری (حامل بار) یک ماژول میتواند یک لایه تاپ یا بالایی باشد یا یک لایه عقبی سلولها باید از آسیب مکانیکی و رطوبت محافظت شوند. اکثر ماژولهای خورشیدی غیر منعطف هستند ولی گونههای نیمه منعطف هم وجود دارند، که همان سلولهای فیلم نازک میباشند. از این ماژولهای خورشیدی اولیه، برای اولین بار در سال ۱۹۵۸ در فضا استفاده شد. اتصالات الکتریکی به صورت سری ساخته میشوند تا به ولتاژ خروجی مطلوب برسند یا به صورت موازی ساخته میشوند تا حداکثر کارایی جریان الکتریسیته بهدست آید. سیمهای هدایتکننده که جریان را از ماژولها خارج میکنند، ممکن است حاوی نقره، مس یا دیگر فلزات رسانای غیر مغناطیسی باشند. این سلولها باید به صورت الکتریکی با بقیه سامانه متصل باشند. ماژولهای فتوولتاییک با کاربرد زمینی، از متصلکنندهها یا رابطههای MC3 یا MC4 برای تسهیل و تقویت اتصالات مقاوم در برابر آب و هوا، استفاده میکنند. دیودهای بای پاس را میتوان هم در داخل و هم در بیرون ماژولها استفاده کرد، (در مورد سایه افکنی نسبی بر ماژول) تا خروجی بخشهای ماژول، به ماکزیمم برسد و هنوز هم روشنایی خود را داشته باشند. برخی از طرحهای ماژول خورشیدی، اخیراً دارای متمرکزکنندههایی هستند که نور در آن از طریق آینه یا عدسی (لنز) متمرکز میشود و روی آرایهای از سلولهای کوچکتر پخش میشود. این ویژگی، امکان استفاده از سلولهایی کم هزینه تر به جای انواع با هزینه بالا در هر قسمت از یونیت، را فراهم میسازد.
بازده و راندمان
بسته به ساختار مورد نظر، ماژولهای فتوولتاییک میتوانند الکتریسیته را در بازهای از فرکانسهای نوری، تولید کنند ولی نمیتوانند تمامی طیف خورشید را بپوشانند؛ بنابراین اکثر انرژی خورشید توسط ماژولهای خورشیدی به هدر میرود و اگر این ماژولها با نور مونوکرومیک روشن شوند، میتوانند راندمان بسیار بالاتری داشته باشند. گزینهٔ طراحی دیگر، این است که نور به طیفهای مختلفی با دامنه و طول موجهای متفاوت تقسیم شود و پرتوها را به سلولهای متفاوتی هدایت کند که با این طیفها تنظیم و سازگار شدهاند. با این کار راندمان تا ۵۰ درصد افزایش مییابد. در حال حاضر بهترین میزان راندمان برای تبدیل نور خورشید، ۵/۲۱ درصد است که برای سلولهای منفرد این میزان بسیار پایینتر است. کارآمدترین و پربازدهترین ماژولهای انبوه، دارای میزان تراکم تا سقف ۱۷۵ وات (W/m^2) میباشند. تحقیقاتی که توسط امپریال کالج انجام شده، نشان میدهد که راندمان یک پنل خورشیدی را میتوان با پوشش دهی سطح نیمه رسانا و دریافتکننده نور، به وسیله نانواستوانههای آلومینیومی، مثل رشتههاها یا لگو بلاکها، بهبود داد. سپس نور پراکنده شده در طول یک مسیر طولانی درون نیمه رسانا حرکت میکند و بیشتر فوتونها میتوانند جذب و به جریان تبدیل شوند. گر چه این نانواستوانهها قبلاً به کار رفتهاند در آنها به جای آلومینیوم از طلا و نقره استفاده میشده، و پراکندگی نور در نزدیکی ناحیه مادون قرمز رخ میداده و نور مرئی نیز به شدت جذب میشدهاست. اکنون معلوم شده که آلومینیوم جزء فرابنفش طیف را جذب میکند و اجزاء مرئی و نزدیک مادون قرمز طیف هم در سطح آلومینیوم پخش میشوند. این تحقیق ادعا میکرد که با استفاده از آلومینیوم هزینه به شدت پایین آمده و راندمان بالا میرود چون آلومینیوم فراوانتر است و قیمتش از طلا و نقره کمتر است. این تحقیق خاطر نشان میکند که افزایش جریان پنلهای خورشیدی با فیلم نازکتر را به لحاظ تکنیکی، کاربردیتر میکند و مصرف مواد به شدت کاهش مییابد و راندمان تبدیل افزایش پیدا میکند. بازده پنل خورشیدی را میتوان به وسیله مقدار MPP پنلهای خورشیدی محاسبه کرد. مبدلهای خورشیدی توان DC را با اجرای فرایند MPPT به توان AC تبدیل میکنند: مبدل خورشیدی، توان خروجی سلول خورشیدی را دریافت و مقاومت مناسبی را در سلولهای خورشیدی ایجاد میکند تا به توان ماکزیمم دست یابد. MPP در پنل خورشیدی از یک ولتاژ MPP و جریان MPP تشکیل شدهاست؛ در ظرفیت پنل خورشیدی، مقدار بالاتر حجم و ظرفیت، میتواند MPP بالاتری را نتیجه دهد. پنلهای خورشیدی میکرو – تبدیلی، به صورت موازی سیم پیچی میشوند و نسبت به پنلهای معمولی، خروجی بیشتری تولید میکنند (پنلهای معمولی، اتصال سری دارند). میکرو مبدلهای مذکور به صورت مستقل کار میکنند بنابراین هر پنل حداکثر خروجی ممکن را از نور موجود دارد.
خرید پنل های خورشیدی اکثر ماژولهای خورشیدی در حال حاضر از سلولهای خورشیدی متشکل از سیلیکون مونوکریستالی، ساخته و تولید میشوند. در سال ۲۰۱۳، سیلیکون کریستالی بیش از ۹۰ درصد از تولید فتوولتاییک جهان را به خود اختصاص خواهد داد.
ماژولهای فیلم نازک
سومین نسل سلولهای خورشیدی، سلولهای فیلم نازک پیشرفته هستند. آنها در مقایسه با تکنولوژیهای دیگر خورشیدی، راندمان نسبتاً بالاتر و هزینهٔ کمتری دارند.
ماژولهای فیلم نازک سخت و غیر منعطف
در ماژولهای فیلم نازک سخت و شکننده، سلول و ماژول در خط تولید یکسانی ساخته میشوند. سلولهای روی یک زیرساخت یا رو ساخت شیشهای ساخته میشود و اتصالات الکتریکی به صورت insitu تولید میشوند؛ که به آن «ترکیب مونولیتیک» گفته میشود. زیرساخت و روساخت با کپسولی که در صفحه جلو یا عقب قرار دارد و ورقهای از شیشه است، روشن میشود. از عمده تکنولوژیهای سلول در این طبقه میتوان به Cdte, a-si, si+uc-si, tandem یا CIGS اشاره کرد. سیلیکون آمورفوس دارای میزان تبدیل خورشیدی ۱۲ – ۶ درصد است.
ماژولهای فیلم نازک منعطف
سلولهای فیلم نازک منعطف و ماژولهای روی خط تولید مشابهی تولید میشوند در این خط و لایه فوتو اکتیو و سایر لایههای لازم، روی یک زیر ساخت منعطف قرار میگیرند. اگر زیر ساخت، غیر رسانا و عایق باشد آنگاه میتوان از ترکیب مونولیتیک استفاده کرد. اگر زیر ساخت رسانا باشد، تکنیک دیگری باید برای اتصال الکتریکی استفاده شود. سلولهای با روشنایی فلورو پلیمر بیرنگ و شفافی روی قسمت جلویی و یک پلیمر مناسب برای اتصال با زیر ساخت نهایی، در طرف دیگر، در ماژولها، مونتاژ میشوند. تنها ماژول منعطف موجود، از اتصال سه شاخه / سه تقاطعی سیلیکون آمورفوس استفاده میکند.
سلولهای خورشیدی چند شاخهای (IMM) که با تکنولوژی ترکیب – نیمه رسانا ساخته میشوند، در ژوئیهٔ سال ۲۰۰۸ میلادی به سطح تجاری رسیدند. دانشگاه میشیگان یک ماشین خورشیدی ساخته که برندهٔ مسابقه American solar Challenge (ژوئیهٔ ۲۰۰۸ میلادی) بود و از سلولهای خورشیدی منعطف فیلم نازک IMM استفاده میکرد. نیازمندیهایی مسکونی و تجاری با هم فرق دارند، نیازمندیهایی مسکونی ساده هستند و میتوان آنها را بستهبندی کرد بهطوریکه با پیشرفت تکنولوژی سلول خورشیدی، تجهیزات خط پایه مثل باتری، مبدل و سوئیچ انتقال حسگری ولتاژ، باید فشرده باشند تا برای کاربرد خانگی مناسب باشند. کاربرد تجاری بسته به اندازه سرویس، در عصر سلول فتوولتاییک، محدودتر خواهد شد و بازتابندههای هذلولی و متمرکز سازههای خورشیدی پیچیده تری، در حال همگانی شدن و گسترش میباشند. پنلهای فیلم نازک منعطف برای کاربریهای قابل حمل مناسب و مطلوب هستند چون نسبت به سلولهای کریستالی مقاومت بسیار بیشتری در برابر خرابی دارند ولی با برخورد به یک شی تیز ممکن است خراشیده شوند و آسیب ببینند. آنها نسبت به پنلهای خورشیدی سخت و غیر منعطف (استاندارد)، به ازای هر فوت (پا، ۳۰ سانتیمتر) مربع، سبکتر هستند. بازار جهانی PV فیلم نازک و منعطف، علیرغم اظهار احتیاط دربارهٔ کل صنعت PV, CAGR به میزان ۳۵ درصد (۲۰۱۹) را پیشبینی کردهاست که براساس مطالعه جدید Intertechpira، از 32GW فراتر میرود.